POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Metal-ceramic nanomaterials

Course

Field of study Year/Semester

Materials science 1/2

Area of study (specialization) Profile of study

Nanomaterials general academic Level of study Course offered in

Second-cycle studies polish

Form of study Requirements full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

30 15

Tutorials Projects/seminars

Number of credit points

2

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

dr hab. inz. Andrzej Miklaszewski, prof. PP

email: andrzej.miklaszewski@put.poznan.pl

tel. 61 665 3508

Wydział Inżynierii Materiałowej i Fizyki

Technicznej

ul. Piotrowo 3 60-965 Poznań

Prerequisites

Knowledge: basic knowledge of physics, chemistry, materials science,

Skills: logical thinking, using information obtained from the library and the Internet

Social competences: understanding the need to learn and acquire new knowledge

Course objective

1. Provide students with basic knowledge of the technology of obtaining metal and ceramic nanomaterials, to the extent specified by the program content appropriate for the field of study

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 2. Developing students' skills to solve simple problems related to the application of metal-ceramic nanomaterials.
- 3. Shaping students' teamwork skills

Course-related learning outcomes

Knowledge

- 1. The student should be able to characterize metal-ceramic nanomaterials [K_W04, K_W10]
- 2. The student should characterize the basic processes of obtaining metal-ceramic nanomaterials [K_W06, K_W08,]

Skills

- 1. The student is able to select metal-ceramic nanomaterials depending on the application [K_U11]
- 2. The student is able to propose the use of metal-ceramic nanomaterials [K_U07, K_U05]
- 3. The student is able to conduct research on metal-ceramic nanomaterials [K_U05, K_U08, K_U09]

Social competences

- 1. Student potrafi współpracować w grupie [K_K03]
- 2. Student jest świadomy roli materiałów/nanomateriałów o specjalnych właściwościach fizycznych we współczesnej gospodarce i dla społeczeństwa [K_K07]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture: Pass based on a test consisting of 5 general questions (pass if the correct answer to at least 3 questions: <3? Ndst, 3? Dst, 3.5? Dst +, 4? Db, 4.5? Db +, 5 bdb) carried out at the end of the semester.

Laboratory: Assessment based on an oral or written answer concerning the content of each performed laboratory exercise, a report on each laboratory exercise according to the instructions of the laboratory teacher. To pass the laboratories, all exercises must be passed (positive grade from the answers and the report).

Programme content

Lecture:

Nanomaterials and microcrystalline materials. Synthesis of metal-ceramic nanomaterials. Technologies: vapor deposition, non-equilibrium processes, thin layer technique, sol-gel method, chemical reactions in the gas phase. Methods of consolidation of powder materials. Preparation of thin layers. Metal-ceramic nanocomposites: titanium-bioceramics, titanium? TiB, nickel-free stainless steel-hydroxyapatite. Metal-cetramic bionanocomposites.

Lab:

1) Methods of obtaining nanomaterials on the example of the mechanical synthesis process

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 2) Methods for analyzing selected properties of nanomaterials
- 3) Titanium-bioceramics nanocomposites,
- 4) Titanium nanocomposites? TiB,
- 5) Nickel-free stainless steel-hydroxyapatite type nanocomposites.
- 6) Metal-cetramic bionanocomposites.

Teaching methods

1. Lecture: multimedia presentation, presentation illustrated with examples given on the blackboard.

Laboratory exercises: practical exercises, discussion, and preparation of the results in the form of a report, formulation of conclusions regarding the issues discussed during classes.

Bibliography

Basic

- 1. Nanomateriały inżynierskie konstrukcyjne i funkcjonalne. Red. K. Kurzydłowski, M. Lewandowska. PWN
- 2. A. Sokołowska, A. Michalski, K. Zdunek, A. Olszyna, Niekonwencjonalne środki syntezy materiałów, PWN, Warszawa 1991.
- 3. M. Jurczyk, J. Jakubowicz, Nanomateriały ceramiczne. Wyd. Pol. Pozn. 2004
- 4. M. Jurczyk, Mechaniczna synteza, Wyd. Pol. Pozn. 2003
- 5. M. Jurczyk, J. Jakubowicz, Bionanomateriały, Wyd. Pol. Pozn. 2008

Additional

Breakdown of average student's workload

	Hours	ECTS
Total workload	70	2,0
Classes requiring direct contact with the teacher	35	1,0
Student's own work (literature studies, preparation for	35	1,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate